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Abstract

Comparisons are made between the Advection–Diffusion Equation (ADE) approach for particle trans-
port and the two-fluid model approach based on the PDF method. In principle, the ADE approach offers a
much simpler way of calculating the inertial deposition of particles in a turbulent boundary layer than that
based on the PDF approach. However the ADE equations that have recently been used are only strictly
valid for a simple Gaussian process when particle inertia is small. Using a prescribed, but in general
non-Gaussian random particle velocity field, it is shown that the net particle mass flux contains a drift term
in addition to that from the mean velocity of the particle velocity field, associated with the compressibility
of the velocity field. Furthermore the diffusive flux in general depends not only upon the gradient of the
mean concentration (true only for a Gaussian random flow field) but also upon higher order derivatives
whose relative contribution depends on diffusion coefficients Dijk. . . etc. These coefficients depend upon
the statistical moments associated with random displacements and compressibility of the particle flow field
along particle trajectories which in turn depend upon particle inertia. In contrast the PDF approach offers
the advantage of using a simple gradient (Gaussian) approximation in particle phase space which can lead
to a non-Gaussian spatial dispersion process when particle inertia is important. Conditions based on the
particle mean free path are derived for which a simple ADE is appropriate. Some of the features of particle
transport in an inhomogeneous turbulent flow are illustrated by examining particle dispersion in a random
flow field composed of pairs of counter rotating vortices which has an rms velocity which increase linearly
from a stagnation point.
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1. Inroduction

This paper is about ways of modelling the transport of particles in inhomogeneous turbulence.
The practical example and most challenging, is that of particle deposition in a fully developed tur-
bulent boundary layer for which there are numerous ad hoc models (see e.g. the review by Papav-
ergos and Hedley, 1984 and more recently Young and Leeming, 1997). However, more generally,
there are two basic approaches which have been used: the so-called Lagrangian tracking approach
where individual particles are tracked through a random flow field typical of the turbulence by
solving the individual particle equation of motion; and an Eulerian two-fluid approach where
the dispersed particle phase is treated as a fluid in much the same way as the carrier phase, namely
by a set of continuum equations which represent the conservation of mass, momentum and energy
within some elemental volume of the dispersed phase. This paper is devoted to the latter of these
two approaches.

Whilst in principle the so-called traditional two-fluid approach is computationally very efficient
to apply, the draw-back is that until fairly recently, the constitutive relations/closure approxima-
tions necessary for the solutions of the continuum equations have been heuristic/empirical and
not directly traceable to the underlying particle equations of motion. Furthermore the boundary
conditions necessary for uniqueness, are not compatible with the natural boundary conditions of
the system. Very recently, Young and Leeming (YL) (1997) dramatically reduced the complexity
of these model equations by using a simple advection diffusion equation (ADE) where the advec-
tion is provided by the underlying particle velocity field. So the problem of particle dispersion and
deposition is reduced to one of passive scalar diffusion in a compressible particle velocity field
whose statistics are not prescribed (as in traditional passive scalar diffusion) but calculated from
the particle equation of motion. Unlike the two-fluid approach where the continuum equations
are coupled, the ADE is separated from the equation for the mean particle velocity field which
is used as an input to the ADE itself. However the transport equation for the mean velocity
and the form of the particle diffusion coefficient were subject to certain assumptions which were
heuristic in nature and not rigorously derived. That being said, in the case of particle deposition in
a turbulent boundary layer, the model successfully reproduced the main deposition features from
a single set of equations without the use of any adjustable constants.

In recent years, significant progress has been made in modelling dispersed flows with the devel-
opment of a Probability Density Function (PDF) approach which is similar to the Kinetic Theory
of gases in the sense that the continuum equations for the dispersed phase and their constitutive
relations are derived from a master equation which represents the transport of particles in phase
space. In the more traditional Kinetic Method (KM) inspired by the early work of Buyevich
(1971, 1972a,b), the PDF is associated with the particle velocity and position. In the more recent
approach due to Simonin et al. (1993), the PDF is associated with particle velocity, position and
the carrier flow velocity encountered by the particle. Closure approximations are made in particle
phase space rather than in configuration space which in turn yields a set of constitutive relations
for the mass, momentum and energy equations for the dispersed phase. These closure approxima-
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tions are legitimate in the sense that they are formally related to the underlying equations of mo-
tion and preserve realizability. The two-fluid model equations derived in this way, have thus a
much sounder theoretical basis, the only constants involved being those of the particle equations
of motion and statistics of the carrier flow itself.

The purpose of this paper is to make some comparisons of the ADE models of Young and Lee-
ming (YL) (1997) and also more recently Cerbelli et al. (2001) for predicting particle deposition in
turbulent pipe flow with the set of continuum equations based on the PDF approach (Reeks,
2001). In particular certain ad hoc assumptions about the closure of the averaged equations in
the YL and the CGS models need to be examined in the light of more formal closure approxima-
tions based on the PDF method (Reeks, 2001). The purpose is to show whether and if so to what
order in the particle response time these ad hoc closure models are valid. The PDF and two-fluid
approaches use methods and equations based on density weighted averages whilst the advection
diffusion equations (ADEs) involve direct ensemble averaged quantities used. What therefore are
the advantages and disadvantages of either approach?

In Section 2 the YL and CGS models are reviewed. In Section 3, I then examine some of the
assumptions and approximations that were made in these models by considering passive scalar
dispersion of particles in a compressible flow field whose statistics are prescribed along a particle
trajectory—this includes not only the particle velocity and position at time t but also the statistics
of the compressibility of the particle flow field. This allows a precise definition of the particle dif-
fusion coefficient and advection velocity. In Section 4, I present the two-fluid model equations for
the dispersed phase based on the KM formulation of the PDF approach which are subsequently
compared with the ADE approach in Section 5. Then finally in Section 6, some of the basic fea-
tures of the ADE and PDF approaches are illustrated quantitatively for particle transport in a
simple inhomogeneous turbulent flow where the carrier flow mean square velocity varies linearly
with the distance from a fixed stagnation point.
2. Advection–diffusion models

The YL model starts from the continuity equations of the dispersed particle phase, namely
oq
ot

þr � vq ¼ 0 ð2:1Þ
where q(x, t) is the instantaneous particle mass density at position x at time t transported by a
velocity field v(x, t). The concentration and velocity fields are separated into mean ensemble aver-
ages and fluctuating components. Thus,
qðx; tÞ ¼ hqðx; tÞi þ q0ðx; tÞ ð2:2Þ
0
vðx; tÞ ¼ hvðx; tÞi þ v ðx; tÞ ð2:3Þ
where h. . .i means an ensemble average. So taking the ensemble average of the continuity equa-
tion, Eq. (2.1) gives:
o

ot
hqi þ r � J ¼ 0 ð2:4Þ
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where the mass flux J is given by
J ¼ hvihqi þ hv0q0i ð2:5Þ

YL refer to the first term as a convection term (in the sense that the convection velocity hvi is

independent of particle concentration), and the second part as a diffusive term, that is, it depends
upon the gradients of the mean particle concentration. In particular they assume that this term
can be represented to a good approximation by a gradient approximation of the form
hv0q0i ¼ �ðDB þ DturbÞrhqi ð2:6Þ

where DB is the Brownian diffusion coefficient and Dturb the turbulent diffusion coefficient of the
particle. YL set Dturb to be the same as that of the local fluid element dispersion coefficient. The
equation for v(x, t) is
Dv

Dt
¼ UD

sp
ðu� vÞ þ FL þ g ð2:7Þ
where:

• D/Dt is the rate of change with respect to time along an individual particle trajectory;
• the first term on the RHS is the drag force (per unit mass of particle) acting on an individual

particle with Stokes relaxation time sp, moving with the velocity v(x, t) at x, t where the local gas
carrier flow velocity is u(x, t); UD is a factor representing the departure from Stokes drag and is
a function of the particle Reynolds number;

• FL is the particle lift force (per unit mass): in the YL model the form due to Saffman is adopted,
assuming that the major source of lift arises from the local mean shear and the relative velocity
between particle and carrier flow in the axial direction;

• g is the acceleration due to gravity.

We shall refer to this ADE model as an advection with simple gradient diffusion model or a
simple ADE model for short.

A transport equation for the mean velocity hvi is found by ensemble/Reynolds averaging Eq.
(2.7), namely
Dhvi
Dt

¼ � ðv0 � rÞv0h i þ UD

sp
ðhui � hviÞ þ hFLi þ g ð2:8Þ
where D/Dt now refers to o/ot + hvi Æ $, i.e. the rate of change for transport by hvi. In both the
YL and CGS models it is assumed that the particle velocity field v(x, t) is fully developed i.e. the
statistical moments of v(x, t) are all independent of time and D/Dt = hvi Æ $. Using the continuity
equation Eq. (2.1), YL write the first term on the RHS side in terms of the particle velocity covar-
iance, namely
v0 � rð Þv0h i ¼ r � v0v0h i � hv0r � v0i � r � v0v0h i � hv0v � r ln qi ð2:9Þ

so that the transport equation for hvi is given as
Dhvi
Dt

� � r � v0v0h i þ UD

sp
ð uh i � hviÞ þ hFLi þ gþ hv0v � r ln qi ð2:10Þ
where UD refers to the drag factor as a function of the average particle Reynolds number.
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YL argue that the contribution from the last term in Eq. (2.10) is small compared to that from
the other terms because large gradients in concentration are unlikely to occur with large convec-
tion velocities. So ignoring this term and gravity, the transport equation for the steady state mean
particle velocity field in the y-direction normal to the wall in turbulent pipe flow used by YL is
given by
hvyi
ohvyi
oy

¼ �
ohv02y i
oy

� UD

sp
hvyi þ hF yi ð2:11Þ
This together with the gradient diffusion Eq. (2.6) are the basic equations used by YL for dep-
osition in turbulent pipe flow. YL recognize the first term on the RHS of Eq. (2.11) as the origin of
the turbophoretic velocity referred to previously (Reeks, 1983) and replace the particle mean
square velocity in this term it by the form appropriate for local homogeneity, namely
hv02y i ¼ Cðsp=sgÞhu02y i ð2:12Þ
where hu02y i is the local gas flow mean square velocity normal to the wall and the ratio C is based
on an exponential decay for the Lagrangian velocity autocorrelation of the local carrier gas flow
with integral time scale sg, namely
C ¼ sg
sp þ sg

ð2:13Þ
CGS adopt a similar ADE approach to YL but retain the last term involving the compressibil-
ity in Eq. (2.10), approximating it by
hv0v � r ln qi � hv0v0i � r lnhqi ð2:14Þ
The inclusion of this term gave better agreement with their corresponding DNS measurements
of deposition than those based on the YL model.
3. Closure approximations for advection–diffusion

I have recently considered the problem of advection/diffusion of particles in a random com-
pressible velocity field (Reeks, 2001). The situation is precisely the same as the case of particles
transported in an incompressible carrier flow field. That is, we know that because the carrier flow
field contains structures like vortices and straining regions and the way particles interact with
those structures, it will demix a suspension of particles, segregating the particles into regions of
high strain rate. Alternatively, we can argue equivalently that in the process of segregation, a par-
ticle velocity flow field is produced which is spatially random and compressible and hence the
demixing. So the analysis of particle dispersion is similar to that of a passive scalar in an incom-
pressible velocity field except that in addition to the statistics of the particle velocity along a par-
ticle trajectory we also prescribe the compressibility $ Æ v along a particle trajectory. In particular
an advection-diffusion process was considered for which the statistical process for particle dis-
placements in position and compressibility are prescribed about a given point x, t. Let this process
be denoted by [Dx(x, tjs), $ Æ v(x, tjs)] where x, tjs denotes a particle starting out somewhere in the



98 M.W. Reeks / International Journal of Multiphase Flow 31 (2005) 93–114
flow continuum at time s and arriving at x at time t., i.e. we are concerned with all trajectories that
pass through (x, t) (the trajectories that may start off from some initial set of conditions will nec-
essarily be a subset of all those trajectories). If this process is jointly Gaussian, it was shown that
the net mass flux is precisely given by:
1 T
hvðx; tÞqðx; tÞi ¼ hvðx; tÞi �
Z t

0

v0ðx; tÞr � vðx; tjsÞh ids
� �

hqðx; tÞi

� v0pðx; tÞDxðx; tjsÞ
D E

� rhqðx; tÞi ð3:15Þ
This flux differs from that for advection in an incompressible flow field in that the advection
from the ensemble average of the instantaneous local convective velocity is augmented by a �drift�
velocity that depends upon the correlation of the log of the compression C (measured by the time
integral of the compressibility along a particle trajectory) with the local fluctuating convective
velocity. This contribution to the advective flux was first recognized by Maxey (1987) in the
context of particles settling under gravity in isotropic, homogeneous and stationary turbulence.
Without gravity in homogeneous turbulence, the contribution is necessarily zero, but in
inhomogeneous flows as is the case of near wall turbulence, this is not the case, i.e. this term con-
tributes to a drift velocity in general towards the wall arising not only because the particle flow
velocity field is compressible but also inhomogeneous. As in the case of settling in homogeneous
turbulence, it is relatively small for particles with both small and large inertia, with a maximum
value somewhere in between, i.e. for an intermediate Stokes number �1. 1 The second term on the
RHS of Eq. (3.15) is the diffusive flux for which the diffusion coefficients associated with particular
axes have the same form as that due to Taylor for passive scalar dispersion in homogeneous sta-
tionary incompressible turbulence, except that the displacements here refer back in time to the
starting time, whereas in Taylor�s formula the displacements are forward in time from the starting
time: strictly speaking then diffusion coefficients defined in Eq. (3.15) are backward diffusion coef-
ficients and Taylor�s formula represents forward diffusion coefficients (in homogeneous flows
backward and forward defined diffusion coefficients are the same because of reversibility).
3.1. Result for non-Gaussian processes

If, in general, the statistics of the process [Dx(x, tjs),$ Æ v(x, tjs)] are non-Gaussian, then it was
shown (Reeks, 2001) that the particle mass current is compounded of a convective/drift term
vdhq(x, t)i, where to first order in the triple moment of this process
vd ¼ vðx; tÞh i �
Z t

0

ds1 r � vðx; tjs1Þv0ðx; tÞh i þ 1

2

Z t

0

ds1

�
Z t

0

ds2 v0ðx; tÞr � vðx; tjs1Þr � vðx; tjs2Þh i þ � � � ð3:16Þ
and a dispersive flux jdiff which is no longer simple gradient diffusion but depends as well upon
higher order derivatives of the mean concentration, i.e.
he Stokes number here is the Stokes relaxation time/typical timescale of the turbulent motion.
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jdiff ¼ � Dij
o

oxj
þ Dijk

o2

oxj oxk
þ � � �

� �
hqðx; tÞi ð3:17Þ
where the coefficients Dijk etc. are dependent on increasing higher order moments of the process
[Dxi(x, tj0), vj(x, t), $ Æ vp(x, tjs)]. In particular
Dij ¼
Z t

0

ds1 Dxiðx; tj0Þv0jðx; tÞ
D E

� � � �
Z t

0

ds1 Dxiðx; tj0Þvjðx; tÞr � vpðx; tjs1Þ
� �

þ ð3:18Þ
4. Two-fluid models based on the PDF approach

In the traditional two-fluid approach, the continuum equations are obtained by averaging the
instantaneous mass, momentum and energy equations of the particle phase over all realisations
of the turbulent carrier flow field. Thus for a dilute inert non-reacting suspension of particles,
all with the same mass and subject to Stokes drag as considered in the YL and CGS models,
0 ¼ ohqi
ot

þr � hqi�vð Þ ð4:19Þ
hqiDvi
Dt

¼ �
ohqiv0jv0i
oxj

þ s�1
p ðhuii � viÞhqi þ s�1

p hqiu0i ð4:20Þ
where most importantly the averages involved for the particle velocity are particle mass density
weighted averages. 2 Thus in these equations ð::Þ denotes a density weighted average of the quan-
tity in brackets, so that:
�v ¼ hqi�1hqvi; v0 ¼ v� �v; u0 ¼ u� hui ð4:21Þ

The density weighted carrier flow velocity on the RHS of the momentum equations has been

referred to by Deutsch and Simonin (1991) as the flow velocity viewed by the particle. We note
first that, unlike the ADE equations, the continuum equations are coupled equations and required
closure or constitutive relations for the particle Reynolds stresses �hqiv0jv0i and the carrier flow
velocity viewed by the particle. The Reynolds stresses can be obtained via their transport equa-
tions (analogous to the transport equation for kinetic energy), derived in a similar manner to that
for the net momentum equation (or via the PDF equation) using a closure approximation for the
gradient of the Reynolds stress flux. The details are not important to this paper. A simple Bous-
sinesq closure approximation for hqiu0i can be obtained from the PDF approach or more exactly
via a transport equation (Simonin et al., 1993). The simple gradient approximation is the one we
consider here because of its simplicity and because under certain conditions it lends itself to the
interpretation of the momentum equation as an ADE equation. That is, the PDF approach gives
for a process in which the displacements and compressibilities are jointly Gaussian:
this case number density and mass density would be the same because the particles are all assumed to have the
mass.
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hqiu0i ¼ � u0iðx; tÞDxjðtÞ
� � ohqi

oxj
�
Z t

0

ds u0iðx; tÞr � vpðx; t j sÞ
� �

hqi ð4:22Þ
If the process is non-Gaussian, then the diffusion coefficients and convection velocity are mod-
ified in a similar way to that indicated in Eqs. (3.16) and (3.18) for the particle mass flux. So the
formula for this net mass flux is analogous to the net particle mass flux in the ADE approximation
(3.15) and we might therefore legitimately refer to these diffusion coefficients as the fluid–particle
diffusion coefficients. However the flux should be strictly be interpreted as a momentum flux, rep-
resenting the net force per unit volume acting on the particles due to the turbulence. The proper-
ties of these diffusion coefficients in the case of a Gaussian process, have been discussed previously
in uniform shearing and in homogeneous flow (Reeks, 1991, 1993).
4.1. The simple ADE as a special case of the momentum equations

Using this formula in Eq. (4.22), we can establish the circumstances under which the momen-
tum equation would approximate to a simple ADE equation itself (i.e. simple gradient/Boussinesq
diffusion and convection). So with this expression for hqiu0i, we can rewrite the momentum equa-
tion as an equation for the net mass flux as
vihqi ¼ huiihqi � �ij
ohqi
oxj

þ vdihqi � sp
Dvi
Dt

hqi ð4:23Þ
�ij ¼ spv0iv
0
j þ u0iðx; tÞDxjðtÞ

� �
ð4:24Þ
vdi ¼ �
Z t

0

ds u0iðx; tÞr � vpðx; t j sÞ
� �

� sp
ov0jv

0
i

oxj
ð4:25Þ
So it is clear that the momentum equation can be interpreted as a simple ADE equation if the
inertial acceleration term on the RHS of Eq. (4.23) is small compared with the gradient diffusion
term, and the local value of the particle velocity covariance v0iv

0
j has its local homogeneous value: 3

in this case the value of the diffusion coefficient �0ij is given by
�0ij ¼
Z t

0

hu0iðx; tÞu0jðDxðx; t j sÞ; sÞids ð4:26Þ
recalling that in a uniform sheared carrier flow Dx(x, tjs) depends upon the shearing of the carrier
flow (Reeks, 1993). In the case of particle deposition models in turbulent pipe flow, the relevant
mass flux is that normal to the wall, so the relevant diffusion coefficient is independent of the
shearing and appropriate for diffusion in homogeneous turbulence in which the mean carrier flow
is spatially uniform.
e mean here that the turbulence is homogeneous and the mean carrier flow is either spatially uniform or with a
m mean shear.
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The conditions are in general
sphui
Lu

� 1
s2pr

2
0

L2
r

� 1
sp�0
L2
q

� 1 ð4:27Þ
where r0 is the particle rms velocity as if the turbulence was locally homogeneous and Lu, Lq, Lr

are the length scales for variations in mean carrier flow velocity, particle concentration and local
homogeneous particle rms velocity r0, i.e. more explicitly
Lu �
d

dx
lnhui; Lq �

d

dx
ln q; Lr0 �

d

dx
ln r0 ð4:28Þ
The first condition in (4.27) is the condition for particles to follow the mean carrier flow (in the
absence of the turbulence); the second condition is for a drift velocity to be given by Eq. (4.25)
with the particle velocity covariance given by r2

0—this also means that the diffusion coefficient
�0 is given by the form in Eq. (4.26) and the last condition is for gradient diffusion with a diffusion
coefficient given by �0. sphui is generally referred to as the particle stop distance whilst the length
scales spr0 and

ffiffiffiffiffiffiffiffi
sp�0

p
are equivalent to the particle mean free paths kr, kq for changes in particle

velocity and concentration respectively. If sf(p) is the integral timescale of the carrier flow turbu-
lence along a particle trajectory p, and the velocity correlation of the carrier flow is an exponential
decay, then using the homogeneous forms for r0 and �0,
kq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spsfðpÞ

q
hu02i1=2

kr0=kq ¼ ð1þ sfðpÞ=spÞ�1=2
ð4:29Þ
We note therefore that the particle mean free path for changes in particle velocity is always
less than that for changes in particle concentration but that in the limit of sp/sf(p) !1 both
length scales approach the same value (see Fig. 1. For deposition in a turbulent boundary layer
the restriction on Lr0 , i.e. upon the gradients of the turbulent intensity and length scale, is the
most important criterion on the influence of the fluid motions in the boundary layer itself on
whether a simple ADE is appropriate. So noting that Lr is the same as that for the carrier flow
L, and that L=

ffiffiffiffiffiffiffiffiffi
hu02i

p
� sfE where sfE(x) is the Eulerian integral timescale of the carrier flow, and

using the relationships for kr0 and kq in Eq. (4.29), the second criterion in Eqs. (4.27), reduces
to:
sp
sfE

� �
sfðpÞ
sfE

� �
� 1 ð4:30Þ
In the absence of gravity (zero crossing trajectories) the ratio sp,f/sfE although dependent on sp/
sfE, is typically �1, so that the overall criterion would simply be
sp
sfE

� �
� 1 ð4:31Þ
Under these conditions it is clear that we can use the expression given by Maxey (1987) for the
particle compressibility to first order in sp/sfE so that the drift velocity vd has components
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vdi ¼
sp
4

Z t

0

ds u0iðx; tÞ
X
j;k

S2
jkðx; t j 0Þ � x2ðx; t j 0Þ

( )* +
� sp

ohu0iu0ji
oxj

ð4:32Þ
where S and x are the strain rate tensor and vorticity along the particle trajectory arriving at (x, t)
from time zero.
4.2. The influence of boundary conditions

The conditions derived in Eq. (4.27) put restrictions on the spatial variations in the carrier flow
field both with regard to its mean and turbulence intensity, i.e. changes in their value must be
small over the relevant particle mean free path. Boundary conditions, i.e. whether the contain-
ment wall is depositing or reflecting, will also impose restrictions. For instance, suppose we con-
sider a flow which is quasi-homogeneous upto the boundary layer adjacent to a depositing wall for
which the conditions in Eq. (4.27) mean that simple gradient diffusion would apply. Suppose that
the boundary layer is so thin, that it has no effect on the motion of the particles, i.e. gradient dif-
fusion would be considered to apply right upto the wall with a diffusion coefficient given by that in
the bulk �homogeneous� flow. However the natural boundary conditions for a depositing surface
would mean that the particle velocity distribution would change from say near Gaussian away
from the wall to a half-Gaussian at the wall in a distance of the order of the particle mean free
path spr0 where r0 is the particle rms velocity in the bulk flow. In other words fractional changes
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of particle velocity Dr/r0 � 1 will take place over the particle mean free path spr0: a similar
change will apply to the particle concentration. In other words a simple ADE approximation is
only appropriate at least one particle mean free path away from the wall. These features are illus-
trated graphically in Swailes and Reeks (1993) for the solution of the PDF equation for inertial
depositing particles in a turbulent boundary layer.
5. Comparison of approaches

Table 1 compares the two approaches in terms of the features that have been discussed and ana-
lysed in the previous sections.
5.1. Implementation of ADE approach by Young and Leeming

It is clear from this table, that YL have implemented the ADE approach in a way that is
strictly inconsistent with the way it has been derived and can be applied. That is, the closure
approximations for the Reynolds stresses/particle velocity covariances (Eq. (2.10)) and dispersive
flux hv 0q 0i (Eq. (4.23)) are only appropriate for quasi-homogeneous flow whilst the form of the
transport equation for hv(x, t)i used, would imply that these approximations are also valid when
the inertial term Dhv(x, t)i/Dt is important. Even under the assumption of quasi-homogeneity, the
form for the flux hv 0q 0i has both a diffusive and a convective flux (see Eq. (3.15)) of which only the
former is accounted for in the YL and CGS models. Furthermore the only form for hvi(x, t)i com-
patible with the use of these quasi-homogeneous forms is
hviðx; tÞi ¼ huiðx; tÞi � sp
ohu0ju0ii
oxj

ð5:33Þ
YL were well aware of this deficiency, and their reason for using the equation to predict particle
deposition in turbulent pipe flow, was their belief that when the inertial term dominates the dep-
osition process, the convective flux will dominate over the diffusive contribution, so whatever
form is used for the particle diffusion coefficient it is of no consequence so long as it is consistent
with this behaviour. They argue that only in cases where particles almost follow the turbulent fluc-
tuations in the carrier flow, will the diffusive part be greater or comparable to the convective part
and in these circumstances the approximations both for the diffusion coefficient and the gradient
of particle velocity covariance will be valid. This of course is an assumption specific to the prob-
lem of deposition in a pipe—and not a general statement: indeed, at a perfectly reflecting bound-
ary there is at equilibrium, irrespective of particle inertia, a balance of convective (body forces)
and diffusive fluxes (gradient of stresses), so ignoring any influence of particle inertia on the par-
ticle diffusion coefficient for simple gradient diffusion, could lead to significant errors. Further-
more in the case of high inertia particles, the conditions in Eqs. (4.27) rule out any possibility
of the underlying particle velocity field being Gaussian. Thus according to Eq. (3.17) there will
be a significant contribution to the diffusive flux from higher order spatial gradients in the mean
particle concentration (see Eq. (3.17)) as well as all the relevant diffusion coefficients Dijk. . . (see
Eq. (3.18)) including Dij being dependent on the ratios of kr/Lr, kq/Lq. So the assumption that



Table 1
Comparison of ADE approach and two-fluid/PDF approach

Property ADE approach Two-fluid equations based
on PDF approach

Type of average Ensemble averages of particle velocity field;
density weighted for the dispersive velocity v0

Particle density weighted

Types of equation Uncoupled equations: an ADE + transport
equation equation for the advection velocity hvi

Coupled equations for the mass,
momentum and kinetic stresses

Closure
approximation (CA)

Diffusive flux is in general a sum of a drift velocity
and spatial gradient fluxes Di1 i2...in

onhqi
oxi1 oxi2 ...oxin

;

Equation for hvi needs CA for hv 0v 0i and hv0$ Æ v 0i

PDF equation requires CA
for net velocity viewed by the
particle u0 at v, x

Gaussian process If displacements Dx are Gaussian, diffusive flux is
a simple gradient Boussinesq approximation;
only strictly valid in homogeneous turbulence
close to equilibrium (t! 1) with hvi = hui
uniform or simple straining flow in x

For jointly Gaussian Dx, Dv in
particle [v,x] space, u0 given by
simple gradient approximation;
reduces to a simple ADE if spatial
variations in q and v small over
particle mean free paths; same as the
simple ADE obtained by the ADE
approach

Boundary conditions Not natural, depending on a priori knowledge
of the velocity distribution at the wall

Handles natural boundary by solving
PDF equation at/near the wall (near
wall solution) and matching with far
wall solution based on solution of
two-fluid equations. PDF method
crucial to calculating particle
deposition

Limit of heavy
particles sp ! 1

Equation for hv(x, t)i dominated by inertial
acceleration dhvi/dt. Dispersive flux hqv0i is
determined by non-local diffusion coefficients
Dijk. . .. Dij in general � quasi homogeneous
value hqv 0i may be same order as convective flux

Particle motion equivalent to Markov
process with a white noise driving
force. PDF equation reduces to a
classical Fokker–Planck equation
which describes particle transport
exactly

Accuracy and reliability Probably quite reliable for small particles;
could also be accurate for large particles;
suffers from lack of closure approximation
for sp/sf(p) � 1; best suited to calculating
particle deposition in pipe-flow,
but unsuitable as a general approach

Based on a rational approach.
Gaussian assumption for practical
implementation reliable
approximation in phase space for
all sp. Use of PDF equation direct,
means accurate reproduction of
particle wall interactions; a basis
for a general approach to two-fluid
modelling
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the convective flux will dominate over the diffusive flux for high inertia particles is not so obvious
when one considers the possibility of inertia increasing the value of the particle diffusion coeffi-
cients from their quasi-homogeneous value. So the attractiveness of using an ADE approach
where the convection velocity is solved separately, is lost because of the absence of any closure
approximations to account for the influence of the particle inertia on the particle Reynolds stres-
ses and in turn upon the gradient diffusion process itself.
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5.2. Reliability of PDF approach

On the other hand, although the PDF approach leads to a more conventional coupled set of
two-fluid continuum equations, it is clear from the comparison in Table 1, that there are a number
of properties of the two-fluid/PDF approach which makes it more much more reliable. Although
we use a simple ADE approximation in the practical implementation of the PDF approach, we
use it at the simplest level of the dynamics in which the underlying Liouville equation upon which
the PDF equation is based, is a linear equation and so we may have a better chance of success.
What it is important to appreciate, is that a simple ADE approximation at this basic level of
the dynamics, does not imply a simple ADE for the spatial dispersion process, i.e. for the spatial
concentration alone—indeed we have derived the conditions for which it is valid or not valid. The
only real concern with the PDF approach is the fact that fluid point dispersion is assumed to be
Gaussian (particles following the carrier flow precisely), noting that for this motion, the condi-
tions for simple ADE are always met. We of course would not expect this to be true except in
say homogeneous stationary turbulence in the limit of long diffusion times, but the crucial feature
of such processes is that they are non-local and at least this non-localness is captured in the for-
mulae for the particle diffusion coefficients etc.
6. Diffusion in a simple inhomogeneous turbulent flow

In this section we illustrate some of the basic features of the ADE and PDF approaches for par-
ticle transport in a simple inhomogeneous turbulent flow, i.e. flow with zero or uniform mean flow
as is the case for the flow normal to the wall in a turbulent boundary layer. In particular we will
consider the dependence of the particle diffusion coefficients as defined in Eqs. (3.15) on the inertial
parameter sp/sf(p) and illustrate how the persistence of flow structures related to regions of vortic-
ity and straining, can lead to a significant difference between the particle diffusion coefficient and
the fluid point diffusion coefficient. We will also calculate the values for the particle/fluid diffusion
coefficient as used in the PDF equation and in the momentum equation and show how accurate it
can be calculated by using Eulerian time scales for the fluid point motion seen by the particle.

Thus we consider dispersion in a simple inhomogeneous turbulent flow field composed of pairs
of counter rotating vortices which are periodic in both the x,y directions with the same periodic-
ity. Each lattice cell (the basic periodic element) contains a pair of counter-rotating vortices in
both the x,y orthogonal directions and is constructed from a linear symmetric straining flow field
in the manner shown in Fig. 2. So starting from an initial symmetric straining flow pattern of
width 2L in both the x,y directions (see Fig. 2(a)), this pattern is repeated front to back in both
the x,y directions with a strain rate S drawn from a uniform distribution [0,S0]. We note that each
quadrant of this straining rate pattern in Fig. 2(a) is a quadrant of one of the two pairs of counter-
rotating vortices formed within the lattice cell in Fig. 2(b). As shown in Fig. 3(a), the flow velocity
ux in the x-direction has a linear saw-tooth profile U(x), with a slope of constant magnitude S but
with a change in sign across the y-centre line of a vortex 4 where the maximum and minimum
4 The line running in the y-direction passing through the centre of the vortex.
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Fig. 2. Generation of flow field used in simulation.
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values ±SL/2 of U(x) are located: across the x-centre line, ux changes to �U(x) as shown in Fig. 3,
consistent with the change in direction of the streamlines shown in Fig. 2(b). The flow velocity uy
in the y-direction at (x,y) is �U(y) to preserve continuity of flow through out. This cellular flow
pattern of counter-rotating vortices so formed, persists for a fixed life-time selected from an expo-
nential distribution with a decay time of S�1

0 , at the end of which time, a fresh flow field is gen-
erated with new values of the life-time and S and the origin of the pattern at the same time
shifted by a random displacement in the y-direction, drawn from a uniform distribution [0,2L].
This makes the average flow homogeneous with zero mean in the y-direction but inhomogeneous
in the x-direction. In particular, as shown in Fig. 3(b), the carrier flow rms velocity hu2xi

1=2 in the
x-direction is a linear saw-tooth in x with a peak value of S0L=

ffiffiffi
3

p
along the y–vortex centre lines.

The important feature of this randomized flow field is that the equations of motion of an individ-
ual particle in both the x, y-directions are linear and independent of one another (other than
through the maximum length of time a particle can experience a particular value of the straining
of the flow in either the x- or y-directions before it changes sign). With respect to the centre (stag-
nation point) of a symmetric straining flow pattern (see Fig. 2(a)), the flow velocity within that
flow region is given by:
ux ¼ þSx; uy ¼ �Sy ð�L 6 x 6 L; �L 6 y 6 LÞ ð6:34Þ
and the particle equation of motion based on Stokes drag, is
€xi þ s�1
p _xi þ ð�1Þiþ1s�1

p Sxi ¼ 0; ði ¼ 1; 2Þ ðx1 ¼ x; x2 ¼ yÞ ð6:35Þ
where xi is measured from a stagnation point. For convenience we express the particle response
time sp in units of S�1

0 so S here is strain rate in units of S0, and picked from a uniform distribution
[0,1].

Fig. 4 shows the evaluation of the carrier flow fluid point diffusion coefficient as a function of
time for a number of equally spaced locations in x measured from the x = 0 stagnation point. The
diffusion coefficient is symmetric about a stagnation point x = 0 for �L 6 x 6 L, with the pattern
repeated periodically over a length scale of 2L, as is the case for the carrier flow rms etc. (see Fig.
3(b)). Thus in this case, as also in subsequent cases, we only show the values of averaged quan-
tities for 0 6 x 6 L. In this respect therefore the flow in this limit corresponds to a turbulent
boundary layer 0 6 x 6 L with a perfectly reflecting wall at x = 0. The significant feature of
the fluid point (carrier flow) diffusion coefficient is that whilst rising to peak value at tS0 � 1, it
tends to zero in the limit of tS0 !1, i.e. the fluid point motion is contained in closed orbits (trap-
ping) so that no matter what the randomness, the basic periodicity of the flow pattern means that
the fluid point is confined (i.e. zero diffusion). In other words the actual timescale/length scale for
diffusion in the long-term limit is zero (sf(p) = 0).

The same procedure of calculating backwards in time t from a given location x cannot be used
for particles with inertia sp > 0 since we do not know what distribution of velocities to select the
particle velocity at say x, t. So in these cases we are forced to track forwards in time from a uni-
form spatial distribution of particles with some prescribed distribution of velocities: in this case
we chose an initial particle velocity distribution identical to that of the carrier flow. Thus is each
realisation of the flow, the same particle is introduced randomly into a lattice cell within the
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range �L 6 x 6 L with a velocity identical to the carrier flow at its x-location. The particle is
then tracked by solving the particle equations of motion, Eq. (6.35). At any selected time t,
the position within a lattice cell is evaluated with respect to the appropriate stagnation point
for which �L 6 x 6 L. By dividing the range �L 6 x 6 L into a number of consecutive inter-
vals/bins, the particular bin into which the particle location falls is determined, and in turn
the displacement of the particle with respect to its initial position Dx(x, tj0) is stored along
with the particle velocity and carrier flow velocity at x. Although a particle may be tracked be-
yond the lattice cell within which it was initially located, because of the periodicity of the flow
pattern, the statistics or averages determined from the values stored in the bin are the same for
the same location in any lattice cell, given that the whole infinite flow domain is seeded unifor-
mally with particles.

As time progresses, the particles are no longer uniformally distributed, but show a distinct build
up of concentration in the vicinity of the stagnation point x = 0. The behaviour is consistent with
a combination of drift and diffusion acting in opposite directions. This build up of concentration
increases with time and is dependent upon the value of sp. Fig. 5 shows the maximum occurring
around sp � 1.

Figs. 6 and 7 show the spatial dependence of both the particle diffusion coefficient and fluid–
particle diffusion coefficient at various increasing times for particles with sp = 1. In the case of
the particle diffusion coefficient, it is worth noting that its value is not zero at the stagnation point:
this is entirely due to the influence of particle inertia or overshooting of the particle velocity. In fact
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the particle behaviour in this region is very much like a lightly damped harmonic oscillator (crit-
ical damping occurring at a value of sp = 0.25). The profile at S0t = 50 approximates to the long
term values for the particle diffusion coefficient. Compare this with the long term quasi-homoge-
neous values with sfðpÞ ¼ S�1

0 shown also in Fig. 6 which is independent of particle inertia and
given by
hv0iðx; tÞDxjðtÞit!1 ¼ 1

3
S0x2 ð6:36Þ
Note that the long term particle diffusion coefficient is less than the corresponding long term
quasi-homogeneous value, with a flatter profile. The corresponding values for the fluid–particle
diffusion coefficient do not exhibit any influence of overshooting, its value at the stagnation point
being always zero. The strict uncertainty in determining its value analytically is the uncertainty of
the timescale of the carrier flow turbulence seen by the particle which as we have seen differs sig-
nificantly between trapped and non trapped particles. For comparison we have shown the long
term equilibrium value of this coefficient using the same value for sf(p) as that of the average life-
time of the flow pattern namely S�1

0 . So in this case for an exponential correlation of carrier flow
velocities seen by the particle,
hu0iðx; tÞDxjðx; t j 0Þit!1 ¼ 1

3
ð1þ spÞ�1S2

0x
2 ð6:37Þ
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where sp is in units of S�1
0 . For the case of sp = 1 shown, the agreement between this value and

the longer term value at S0t = 50 calculated from the simulation is quite good considering the
uncertainties in the value of sf(p). Figs. 8 and 9 show the dependence of these same diffusion
coefficients upon particle inertia sp for a fixed time tS0 = 1. Note that the overshooting in the
particle diffusion coefficient due to particle inertia is present only for sp P 0.25 consistent with
the behaviour of lightly damped harmonic oscillator: for all values of the particle inertia, the
trend is towards increasing particle diffusion coefficient with increasing inertia. For the fluid–
particle diffusion coefficient in Fig. 9, there is again no overshooting, and the trend of decreasing
value with increasing particle inertia is the same as that for the quasi-homogeneous values, how-
ever we note that the values for sp = 1 are an exception. The results shown in Fig. 10 show that
the long term value of the particle–fluid diffusion coefficient averaged over 0 6 x 6 L ap-
proaches the long term quasi-homogeneous value for large inertia particles. Here the long term
value is taken to be at least S0t = 10sp. The average value is chosen for reasons of presentation/
accuracy (especially in the case of particles with sp � 1 where the diffusion coefficient is very
small). Such behaviour, as we have stated previously, is consistent with the fact that in this limit
of high particle inertia the relevant closure approximation is an exact in the PDF approach, and
that the local Eulerian timescales can be used for the timescale of the carrier flow seen by the
particle.
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7. Summary and conclusions

The ADE approach introduced by Young and Leeming to calculate particle deposition in a tur-
bulent layer represents a significant advance in modelling, reproducing the known features of the
deposition curve in a simple direct way without resorting to any adjustable constants. Its advan-
tage over that of the traditional two-fluid approach is a strictly computational one however,
namely the equation for the mean convective velocity hvi is independent of the equation for the
mean particle concentration and mass flux, so hvi can be solved for separately before it is intro-
duced explicitly into the ADE for the mass flux hqvi. However we have shown that problems arise
with the practical application of the ADE in situations where particle inertia sp/sf(p) is important.
Whilst the inertial acceleration term Dhvi/Dt is directly included in the equation for the local
mean particle velocity field, the closure approximations for the drift due to the gradients of kinetic
stress (the so called turbophoretic term) and the particle diffusion coefficient both assume forms
which are appropriate only for local homogeneous flows and for low inertia particles, i.e. the influ-
ence of particle inertia (due to spatial inhomogeneity of the turbulence) is ignored. An analysis of
passive scalar dispersion in a compressible flow field leads to a simple ADE only if the flow field is
strictly Gaussian which is only justified when changes in the concentration and particle velocity
covariance are small over a particle mean free path (see Eq. (4.27))—in this case the ADE reduces
to the quasi-homogeneous form. That is the influence of particle inertia is to turn a simple ADE
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into one in which the dispersive flux hq 0v 0i depends upon higher order gradients of the mean con-
centration and diffusion coefficients Dijk. . . which themselves depend upon the particle inertia and
are markedly different from the local homogeneous values.

Furthermore any attempt at using closure approximations borrowed from those for density
weighted averages (as in the two-fluid approach), though expedient, is strictly not legitimate
and destroys the independence of the equation for the convection and the reason for using an
ADE approach in the first place. For consistency all closure approximations in an ADE should
be derived from the equation for the particle velocity field, i.e. not involving mean concentration
gradients etc.

In Section 5 we gave a number of reasons why the PDF approach was much more reliable than
the ADE approach, the most important one being that closure approximations are applied to a
linear equation, the Liouville equation, in particle phase space so that simple gradient (Gaussian)
approximations have a greater chance of success: certainly the resulting mass–momentum and
energy equations admit all the features of a non-Gaussian process even though the underlying
process in phase space maybe be Gaussian. Furthermore in the simple inhomogeneous flow con-
sidered, the fluid–particle diffusion coefficient used in the PDF approach is much better predicted
than the corresponding particle diffusion coefficient using a local homogeneous assumption: what
is perhaps even more important is that the approximation gets better the greater the particle iner-
tia and in the limit is exact. Of course the other important and crucial reason for using the PDF
approach not touched upon here is that the approach handles natural boundary conditions
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without any further ad hoc assumptions as in Swailes and Reeks (1993) and Reeks and Swailes
(1997).
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